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1. Introduction. In computations, the data may consist ohrax n matrixA Then, it is often of interest to evaluate a low-
rank approximation t, i.e., an approximatio® to the matrixA of rank not bigger than a specified rdnkwherek is
smaller tharm andn Methods such as the singular value decompos{§®D) can be employed to find an approximation
to A which is the best in a well-defined sense [9].

SupposeA and B which arem x n andn X p, respectively are the two input matrices. We penfo independent trials,
where in each trial we randomly sample an elem&fl o2, . . ., hwith an appropriate probability distributiddon {1, 2,
..., n} We form ann x ¢ matrix C consisting of the sampled columnsAfeach scaled appropriately, and we form a
¢ X n matrix R using the corresponding rows Bf again scaled appropriately. The choicé”,adnd the column and row
scaling are crucial features of the algorithm. Wiiese are chosen, we show thiAtis a good approximation #B. More
precisely, we show that

IAB — CRIlr = O(lAllIIBIl 7 /<)

where ||. || denotes the Frobenius norm, ile.||% =Zi,jA§j. This algorithm can be implemented without storihg
matricesA andB in RAM, provided it can make two passes over the matst@ed in external memory and Lﬂs@(m +
n+ p)) additionalRAM to construcC andR [2].

We are interested in developing and analyfastyMonte Carlo algorithms for performing usefumputations on large
matrices. In this paper we consider the singultwevdecompositiodSV D) ; based on two related papers [5,6] we consider
matrix multiplication and a new method for compgtea compressed approximate decomposition of a la@ex. In this
paper, we present a computational model for comgutin massive data sets (the pass-efficient madedyhich our
algorithms may naturally be formulated; we alsospre algorithm for the approximation of the prodattwo matrices.
Also, we present two algorithms for the computatibfow-rank approximations to a matrix [4].

Recent interest in computing with massiveadadts has led to the development of computatimoalels in which the
usual notions of time efficiency and space efficiehave been modified [12,11,1,9,8,3]. In the agtlons that motivate
these data streaming models[11,3], e.g. the obenah sciences and the monitoring and operatiotaafe networked
systems, the data sets are much too large taditnirain memory.

1
Definition: For a vectoxeR™ we letx;, i = 1, . . ., n, denote théh element ok and we lefx| = (XL, |x;|?)z. For a
matrix AeR™" we let,A9), j=1, ..., n, denote thth column ofA as a column vector andg) i=1,...,m, denote the
ith row of A as a row vector; thus, #; denotes the (i, jjh element ofA. The range of adeR™" is

range(A) = {)eR™: y = Ax for some %R"} = span@®, ---, A™).

The rank of4, rank(A), is the dimension afang(A) and is equal to the number of
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linearly independent columns 4f; since this is equal to ramk{) it also equals the
number of linearly independent rowsAfThe null space o is

null(A) = {x eR™: Ax = 0}.

For a matrix4eR™ "™ we interest will be the Frobenius norm,
which is defined by

1
1Al = (Zﬁ1z7j1=11412j 2

If Tr(A) is the matrix trace which is the sum of the diag@hements of, then

lAllZ = Tr(ATA) = Tr(AA").

THE SINGULAR VALUE DECOMPOSITION(SVD)

If AeR™ ™, then there exist orthogonal matri¢désR™ ™ andVeR™"
andUTAV = £ andX is a diagonal matrirxn such that

UTAV =% = diag(0y,05,++,0,) , p=min{m,n}

020,220,220
Then theSVD decomposition oA is given asA = UXVT.
The vectora!, viare called the left and right singular vectorsdagspectively, which correspond to the singular gaju
The left and the right singular vectors can be mat@d from the right and the left singular vectayghe
formulas:

Avt = gul ATyt = gyt
Equivalently,a? = ¢ = -+ = o2 > Oare all the positive eigenvalues of the nonnegatifinite symmetric matrice$A4T,
AT A, with the corresponding orthonormal eigenvectqrst,, -+, u,€R™ andvy, v,, -+, v, R™ .
we define r by, >0,> + + * >0,>0,41= = 0,= 0, then rank(A) =,
null(4) = span(v"*1, -, v?) andrang(4) = span(u?t,---,u")

If we letU,eR™*"denote the matrix consisting of the first r colunahdJ, V,.e R™"denote the matrix consisting of the first
columns ofV, andZ, eR™"denote the principalx r sub matrix o, then

— T _ 7 t,tT
A=U.LV, =Y 0uv

Note that this decomposition property providesocical description of a matrix as a sumrafank-one matrices of
decreasing importance.kf<r and we define

Ae = UV = S outvt”, A = UUTA = (Shoutut")4
A = AV VT = A(ZE vt

A, is the projection ol onto the space spanned by the top k singular \&ofat.
Furthermore, the distance betwetand any ranke approximation tA is minimized by Ai.e.,

min lA-DIE=NA~AllE=Xt— k41 o2 (A)
DeR™*MN.rank(D)<k

Al = Eicio?  NAlE = X, 08

APPROXIMATING MATRIX MULTIPLICATION
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Recall that fode R™ " andBe R™ P, the producdB may be written as the summfank-one matrices

AB =¥l A(t)B(t)

From this, a simple algorithm for approximate matriultiplication suggests itself : pick a randonbset ofc columns of
A to form anm x ¢ matrixC; form anc x p matrix R out of the corresponding columns Bf Then, intuitively, that the
productCR is an estimator (entry by entry) of the proddBt

We can sample the columnsA&o that columr is chosen with probability; satisfying

Pli=kl=P, ,k=1-n

_ _|A(k)'\‘f<k’>
A3 )|

Py

A.M.M. Algorithms :

Input: AeR™", BeR™P, ceZ* such that 1 < ¢ < n,and {P;}}-, such that
P,>0and Y., P =1

Output: CeR™*“andReR*?,

1. Fort=1toc,

(a) Picki.e{1, ..., ntwith Pr [i;=K] =P,, k=1, ..., nindependently

and with replacement.

(b) SetC®= A(it)/JCPit and R(t) = B(it)/m

2. ReturnC,R

When this algorithm is given as input two matrideandB, a probability distributiodP;}7-,, and a numbec of column-
row pairs to choose, it returns as output matricasadR such that the produ@Rr is an approximation tdB. Observe that
since

1
P (i)

CR = Zf=1 C(t)R(t) = Zf:l A(it)B(it)

Definition: The sequence of matrid@$§™ R, } m=1,2,... where they are independent and identichdfiribution a<R
we call th€ VR, C?PR,y, -+ perform a sequence of realized simulated matot€x.

Definition: For m=1,2,...,LC(™ R, independent realized stochastic matrices with @ty (C ™R ,)) = AB
i.e. C™ R, with the same distribution as mat® whereE(C™R,,)) = AB , thenG = %ZLmﬂ C™R iy is called the
Monte Carlo simulated matrix @R.

Implementation of the sampling and running time. To implement thed. M. M algorithm, it must be decided which
elements of the input to sample and those elemmuogt then be sampled. In the case of uniform samgmine can decide
before the input is seen which column-row pairsample. Then, a single pass over the matricesfisisat to sample the
columns and rows of interest and to constiieindR; this requiresO(c(m+ p)) additional time and space. We will see
below that it is useful to sample according to a mmiform probability distribution that depends column and row
lengths, e.g.

In order to decide which column-row pairs to saniplsuch a case, one pass through the matrice®@)ddditional time
and space is sufficient; in the additional spaceing totals of A%|“and|B,|” are kept, so that after the first pas&|,
|Bao|. k=1, ..., nand thus the probabilities, can be calculate@(i) additional time.

Then in a second pass the columns and rows ofesttean be sampled addand R can be constructed and stored; this
requiresO(c(m + p)) additional space and time. Thus, in additioeitber one or two passes over the data, for boffloram
and non uniform sampling)(c(m+n+p)) additional space and time is sufficient to sasrfpbm the matriced andB of the
input and to construct the matric@sindR.
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Lemma 1. SupposeleR™*", BeR™?, ceZ*such that K c< n,and{P;}i-, are such thak;>0 and}.j-, P; = 1. Construct
C andR with theA. M. M algorithm, and le€R be an approximation tB.Then [5]

E[(CR);;] = (4B);;

1 ARBE 1
Var[(CR);;] == 7}2:1% —=(4B)}; .
Lemma 2. SupposdeR™*", BeR™?, ceZ*such that ¥ c< n,and {P;}]-,are such tha®,>0 andY.]-, P, = 1 . Construct
C andR with theA. M. M algorithm, and le€R be an approximation téB. Then [5]

2 2
[a® [Bo|”
e —

_ 21 — \y'n
E[IIAB = CRIF] = They *—

1
~11AB|I3
Furthermore, if

[4%B e |

P = —2 0L
S VCY E

Then

E[IIAB — CRII3] = 2 (Zp_a|A®|[Buy|)” 2 114BIIZ .

We will say that the sampling probabilitigs = |A®||By,|/Zm:_, |4 |B(k,) are theoptimal probabilitiessince they
minimizeE[||AB — CR||%], which as Lemma 2 shows is one natural meastuteecgrror. We will say that a set of sampling
probabilities {P;}!-, arenearly optimal probabilitiesf P, = B|A®||Byy|/Zk_,|4*)] |B(k,) for some positive constant
p<1.

Theorem 1. Suppos®™*™ , BeR™ P, ceZ*such thatl <c<n, and {P;}].,are such thaty.}_, P, = 1and such that for
some positive constafit< 1
BlA®| 1B
Zhora |44 B )|

ConstructC andR with the A. M. M algorithm, and le€R be an approximation #B.
Then [5],

1
E[llAB — CRIF] < 2 IAIIFIBIIZ

Furthermore, le$ € (0, 1) andh = 1 + /8/B log(1/8) Then, with probability atleast 1&;
2
14B — CRII% < Z-1lAI1BIIZ

In particular, ifc > 1/8<2, then by using Jensen’s inequality it follows that
E[IIAB — CRIIZ] < ellAIZIIBIIZ

and if, in additiong >n?/B<2, then with probability at least4 6
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lAB — CRllr < ellAlllIBIlF -
By takingB = ATand applying Jensen’s inequality, we have the ¥alig theorem as a corollary of Theorem 1.

Theorem 2. SupposéleR™ " , BeR™*P, ceZ*such that & c<n, and {P}{L,are such thal;i-, P, = 1 and such that
P, = B|A®||Byo| /T -, |ACKD) |B(kr)| for some positive constapit 1.Furthermore, le$ € (0, 1) and

n=1+./8/Blog(1/8).ConstructC (andR = CT)

with theA. M. M algorithm, and leCCTbe an approximationtdA”. Then [5],

1
E[lAAT —CCTll] < EIIAII%
and with probability at least 1&;

1447 —cCTlle < 7= 114117 .

Linear Time SVD Algorithm (L.T.SVD)

Input: AeR™ ", BeR™?, ¢, keZ* such that 1 < k < c < n,and {P;}}-, such that
P,=0and ', P;=1

Output: H eR™™" and 0,(C),t = 1, , k.
l.Fort=1toc,

(a) Pickizel, ..., nwithPr[i;=a] =P,,a=1,...,n.
(b) Setat)/ [cP;, .

2. Computec € and its SVD; sag”C =X¢_, a2(C)yty""
3. Computeh! = Cyt/a,(C) fort=1,..., k.

4. Returrt,,, whereH® = rt ,and 0,(C), t=1,. ..,k

Linear time SVD approximation

Given a matrixAeR™ ™we wish to approximate its tolp singular values and the corresponding singulatovec The
strategy behind the Linear Tins& D algorithm is to pickc columns of the matrid, rescale each by an appropriate factor to
form a matrixCeR™ ", and then compute the singular values and cornebpg left singular vectors of the matiix which

will be approximations to the singular values aefl singular vectors oA, in a sense we make precise later. These are
calculated by performing a8V D of the matrixCCTto compute the right singular vectorsénd from them calculating the
left singular vectors of .

It will be shown that if the probabilitig®;}]=; are chosen judiciously, then the left singulactues of C are with high
probability approximations to the left singular t@s ofA.

We will show that in addition to this error the matH, HI A has an error that depends [pA” — CCT||r . Then, using the
results of Theorem 2, we will show that this aduiil error depends ofp4||2.

Theorem 3. Supposele R™™and letH, be constructed from thie T. SV D algorithm. Then [6],
A — HeHAllE < A = Al + 2Vl AAT = CCT g

Theorem 4. Supposele R™*™; letH,, be constructed from tHeT.SVD algorithm by sampling ¢ columns Afwith

probabilities{P;}*, such thap; > [3|A(")|2/||A||2 for some positivgg <1, and let. Letn = 1 +,/8/f1og(1/6) . let £ >
0 .Ifc = 4k/Be?, then [6],
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E[llA — HeHg AlIE] < 1A — AlIE +ellAllR

and ifc > 4kn?/Be?, then with probability at least 18;
1A — H Hg Al < 1A — Al +ellAllE.
I mplementation details and running time

To measure the approximation error we defined ¢hative error of the approximation pd,— H, HL A||2/||A||%2 whereA is
the original data matrix andl,HTA is k-rank approximation teA given by L.T.SVD algorithm. the optimal error
1A — Agll2/11All2 whereA, is the optimak-rank approximation to matri4. The best approximation is given by singular
value decomposition, which is too time consumingviery largem andn.

Given the elements to be sampled, the mdtrean then be constructed in one additional passyéujuires additional space
and time that i® (mc). GivenCeR™*¢, computingC” C requiresO (mc)additional space and(mc?) additional time, and
computing thesVD of CT C requiresO(c?) additional time. Then computirg, requires k matrix-vector multiplications for
a total of0(mck)additional space and time. Thus, ovetdltm+c?) additional space an@(c?>m +c?) additional time are
required by thd..T.SVD algorithm.

Constant Time SVD Algorithm (C.T.SVD)

Input: AeR™",c,w,k € Z* suchthat 1 <w <m,1 <c <n,and 1 < k < min(w, ¢),{P,}}, such that P, >
Oand Y-, P, = 1.

Output: o,(W),t = 1,---l and HeR™*.

1. Fort=1toc,

(a) Picki.el,--,nwithPrl[i, = a] =P, a =1,-+,n,and save {(it,Pjt) it = 1, ---,c}.
(b) Set AU/ [cP;, . (note that C is not explicitly constructed in RAM.)
2. Choose {qj}:,n:l such that q; = |C(j)|2/||C||2.
3. Fort=1tow,
(a) Pick jo€1,--,mwithPr[j, =a]l =qpa=1,-,m.
(b) Set Wy = Cijpy/ /W,
4. Compute WTW and its SVD.Say WTW = ¥¢_, 62(W)z'zt .
5. If a|l.llr bound is desired, set y = £/100k.
6. Let | = min{k,max{t: cZ2(W) = y|[W||2}}.
7. Return singular values {o,(W)}\_, and their corresponding singular vectors {z‘}._,.

Constant time SVD approximation (C.T.SVD)

Given a matrixdeR™ ™ we now wish to approximate its tdpsingular values and the corresponding singularoredhe
C.T.SVD algorithm is to pick ¢ columns

of the matrix4, rescale each by an appropriate factor to forma&irm C eR™*¢, and then compute approximations to the
singular values and left singular vectors of therima, which will then be approximations to the singwafues and left
singular vectors afl. In theL.T.SVD algorithm, the left singular vectors of the matéxare computed exactly. With the
C.T.SVD algorithm, sampling is performed again, drawing safC to construct a matrik/eR"*¢. TheSVD of WTW is
then computed; le™ W = Z¥,,,r,,Z" = ZY3,Z". The singular values and corresponding singulators so obtained are
with high probability approximations to the singuelues and singular vectors ©fC and thus to the singular values and
right singular vectors of. Note that this is simply using theT.SVD algorithm to approximate the right singular vectors
of C by randomly sampling rows @f.

In that caseH[ H, = I, HT H,, was an orthonormal projection, aHfiH, A was our rank at most k approximationian

the constant time model, we do not have acceHs tt instead tH;, where the columns &f,, i.e.,ht = CZ" /o, W t=1,
...,t, do not form an orthonormal set. Howevel§ iindW are constructed by sampling with optimal probaiksit then

with high probability the columns df,are approximately orthonorm@ [, ~ I, , andH, A = ¥!_, A*A''s

approximately an orthonormal projection. ApplyimgsttoA, we will get our low-rank approximation.
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Theorem5. SupposeleR™*" ; let a description offf; be constructed from th& T. SVD algorithm by sampling ¢ columns
of A with probabilities {P,}*,and w rows of. with probabilities {qj};r;lwherepi = |A(")|2/||A|I,% andg; = |C(j)|2/||C||,%

letn =1+ ./8log(2/6) ande > 0 . If a Frobenius norm bound is desired, and héme€.T.SVD algorithm is run withy

= £/100k, then by choosing > k2n?/&* columns ofA and

w > k%n?/e* rows of C we have that with probability at least 5 {6],

Examplel: Let AeR™™ 5 BeR™P. We want to evaluate an approximatiom&f by Monte Carlo method whereand R

have the same structure as explained. M. M method.

la— AT mAI| < A= Adll? + ellAlI2.

L 10 50 100 150 200
mn,p
m,n = 500,p = 300 0.0402 0.0074 0.0033 0.0027 0.0021
m,n = 1000,p = 0.0394 0.0074 0.0038 0.0027 0.0019
900
m,n = 1500,p = 0.0382 0.0076 0.0037 0.0024 0.0020
1000
m,n = 2000,p = 0.0373 0.0075 0.0038 0.0025 0.0020
1000
Table 1: Relative error of results in example 1
_ 2
It is well known that the relative error ig’“iTTf"F.
F
4 ™
§ =¢=—m=n=500,p=300
o == m=m=1000,p=900
m=n=1500,p=1000
== m=n=2000,p=1000
Nl y

Fig 1: Error of results based on number of iterationgetdamA. M. M Algo

In table 2, we compare the computational time neéddeapproximatingdB by CR multiplication, using: = 2

200 and the corresponding time needed for obtaiBg multiplication where we show them ktymel and time2,

respectively.

m,n,p timel time2 Relative Error
m,n = 500,p = 1.6869 3.909653 0.0021
300
m,n = 1000,p = 4.812916 50.051374 0.0019
900
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m,n = 1500,p = 7.815693 125.800965 0.0020
1000
m,n = 2000,p = 10.503226 249.492549 0.0020
1000
Table 2: Computational time fo€R andAB
/ N
£
£
T
E
500%x300 1000x900 15001000 2000x1000
=f=timel 1.6869 4.812916 7.815693 10.503226
Y == time2 3.909653 50.051374 125.800965 249.492549

Fig 2: Comparison of computational time for obtainifg andAB

We note that the computational time for obtainitiiybased on algorithm. M. M is significantly less than the
corresponding time for evaluatip .

Example 2: Suppose thateR™™ . Using a fixedk = 1 and increasing (the number of columns that we select them
randomly), we want to evaluate the relative ertibe, computational time of bothT.SVD and optimalSVD algorithms
and compare them together. We note that for=1 , m =n = 1500 the relative error sand speed of optimal are
0.2497 and 20215822 secondsrespectively.

c Relative Error Time
200 0.2509 3.720119
400 0.2502 8.071144
600 0.2499 31.635689
800 0.2498 55.630737
1000 0.2498 91.607197
1200 0.2497 144.304089

Table 3: Relative error and computational time of optilB&Dalgorithm

_ 2
Relative error of optimat rank approximation i%
F

i, uTal?
Relative error of the L.T. SVD algorithm &7/4 Hicki Al

lalz
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. )
=¢=total number of sampled columns == optimal SVD
[ i i
s
o
C
N J
Fig 3: Error of results for optime&VDalgorithm based oa
As we see with increasing the relative error ith. T. SVD algorithm is reduced. Now, if we set=2 , k =1, with

increasing the number of iteratiohsn Monte Carlo method, we compare the relativeren L. T.SVD andSVD

algorithms in table 4.

L Relative Error Time
100 0.2509 3.041115
200 0.2504 4121195
300 0.2501 5.228417
400 0.2500 6.309273
500 0.2499 7.386124
600 0.2499 8.472105
700 0.2499 9.565714
800 0.2498 10.678412

Table4: Error of results for Monte Carlo algorithm basedl.o

error

==@==monte carlo method(L.T.SVD)

== optimal SVD

———,

= numlﬂ' of |ter£on(L) = = i

278
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Fig5: Comparison of errors in optim&V’D and Monte Carlo algorithms

From Fig 5, we conclude that with increasing tHatree error will close to optimaVD error.

Now, we compare the computational time using M&deo (.T.SVD) and optimalSVD algorithms.

4 N\
=¢==monte carlo method(L.T.SVD)
== total number of sampled columns
optimalSVD
5
E
7]
£
=)
{
N\ J

Fig 6: comparison of need time for approximation using 84@SVD methods.
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